50 research outputs found

    6-Cyanonaphthalen-2-yl 4-hexylbenzoate

    Get PDF
    In the title compound, C24H23NO2, a whole molecule is disordered over two sets of sites with occupancies in a ratio of 0.692 (6):0.308 (6). In the major disorder component, the naphthalene ring system forms a dihedral angle of 68.6 (5)° with the benzene ring. The corresponding angle in the minor component is 81.6 (10)°. In the crystal, molecules are linked into chains propagating along the b-axis direction via weak C—H...O hydrogen bonds. The crystal packing is further consolidated by weak C—H...n interactions

    Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions

    Get PDF
    A well-known adsorbent, poly(amidoxime) ligand, was prepared from polyacrylonitrile (PAN) grafted kenaf cellulose, and subsequent characterization was performed by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM) and inductively coupled plasma mass spectrometry (ICP-MS). The adsorption capacities of the prepared ligand for rare earth metals are found to be excellent, with adsorptions of La 3+ , Ce 3+ , Pr 3+ , Gd 3+ and Nd 3+ experimentally determined to be 262, 255, 244, 241 and 233 mg·g −1 , respectively, at pH 6. The experimental values of the adsorption of rare earth metals are well matched with the pseudo-second-order rate equation. The reusability of the adsorbent is examined for seven cycles of sorption/desorption, demonstrating that the proposed adsorbent could be reused for over seven cycles without any significant loss in the original removal capability of the ligand

    Synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction

    Get PDF
    Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose-graft-poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu-ligand]n+ complex were observed to be the highest absorbance 99.5% at pH?6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705?nm indicated that the charge transfer (p-p transition) complex was formed. The adsorption capacity with copper was found to be superior, 320?mg?g-1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223?mg?g-1, respectively, at pH?6. The experimental data show that all metal ions fitted well with the pseudo-second-order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2?>?0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability

    Crystal structure of (E)-4-{2-[4-(allyloxy)phenyl]- diazenyl}benzoic acid

    Get PDF
    The title compound, C16H14N2O3, has an E conformation about the azobenzene [—N N– = 1.2481 (16) A ° ] linkage. The benzene rings are almost coplanar [dihedral angle = 1.36 (7)�]. The O atoms of the carboxylic acid group are disordered over two sets of sites and were refined with an occupancy ratio of 0.5:0.5. The two disordered components of the carboxylic acid group make dihedral angles of 1.5 (14) and 3.8 (12)� with the benzene ring to which they are attached. In the crystal, molecules are linked via pairs of O—H� � �O hydrogen bonds, forming inversion dimers. The dimers are connected via C—H� � �O hydrogen bonds, forming ribbons lying parallel to [120]. These ribbons are linked via C—H� � �� interactions, forming slabs parallel to (001)

    Crystal structure of 4-({(1E,2E)-3-[3-(4-fluorophenyl)- 1-isopropyl-1H-indol-2-yl]allylidene}amino)-1H- 1,2,4-triazole-5(4H)-thione

    Get PDF
    The asymmetric unit of the titled compound, C22H20FN5S, comprises two independent molecules (A and B), both of which have a trans conformation with respect to the methene C C [1.342 (2) and 1.335 (2) A ° ] and the acyclic N C [1.283 (2) and 1.281 (2) A ° ] bonds. In molecule A, the triazole ring makes dihedral angles of 55.01 (12) and 18.17 (9)� with the benzene and indole rings, respectively. The corresponding dihedral angles for molecule B are 54.54 (11) and 14.60 (10)�, respectively. In the crystal, molecules are consolidated into –A– B–A–B– chains along [010] via N—H� � �N hydrogen bonds. The chains are further linked into layers parallel to the ac plane via �–� interactions involving inversion-related triazole rings [centroid–centroid distances = 3.3436 (11)– 3.4792 (13) A ° ]

    Genetic variability, heritability, and clustering pattern exploration of Bambara groundnut (Vigna subterranea L. Verdc) accessions for the perfection of yield and yield related traits

    Get PDF
    Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation () for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted . Yield (kg/ha) disclosed positively strong to perfect high significant correlation ( to 1.00; ) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) %, % and %, %, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with and suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program

    DNA fingerprinting, fixation-index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system

    Get PDF
    As a new crop in Malaysia, forty-four Bambara groundnut (Vigna subterranea L. verdc.) genotypes were sampled from eleven distinct populations of different origins to explore the genetic structure, genetic inconsistency, and fixation index. The Bambara groundnut, an African underutilized legume, has the capacity to boost food and nutrition security while simultaneously addressing environmental sustainability, food availability, and economic inequalities. A set of 32 ISSRs were screened out of 96 primers based on very sharp, clear, and reproducible bands which detected a total of 510 loci with an average of 97.64% polymorphism. The average calculated value of PIC = 0.243, RP = 5.30, H = 0.285, and MI = 0.675 representing the efficiency of primer set for genetic differentiation among the genotypes. The ISSR primers revealed the number of alleles (Na = 1.97), the effective number of alleles (Ne = 1.38), Nei's genetic diversity (h = 0.248), and a moderate level of gene flow (Nm = 2.26) across the genotypes studied. The estimated Shannon’s information index (I = 0.395) indicates a high level of genetic variation exists among the accessions. Based on Nei’s genetic dissimilarity a UPMGA phylogenetic tree was constructed and grouped the entire genotypes into 3 major clusters and 6 subclusters. PCA analysis revealed that first principal component extracted maximum variation (PC1 = 13.92%) than second principal component (PC2 = 12.59%). Bayesian model-based STRUCTURE analysis assembled the genotypes into 3 (best ΔK = 3) genetic groups. The fixation-index (Fst) analysis narrated a very great genetic diversity (Fst = 0.19 to 0.40) exists within the accessions of these 3 clusters. This investigation specifies the effectiveness of the ISSR primers system for the molecular portrayal of V. subterranea genotypes that could be used for genetic diversity valuation, detection, and tagging of potential genotypes with quick, precise, and authentic measures for this crop improvement through effective breeding schemes

    Half diallel analysis for biochemical and morphological traits in cultivated eggplants (Solanum melongena L.)

    Get PDF
    Eleven morphologically diverse cultivated eggplant accessions were used for hybridization following half diallel mating design to obtain 55 hybrids. Evaluation of hybrids along with the parents was conducted over two locations followed by randomised complete block design with three replications to study gene action and combining ability of 15 morphological and biochemical traits. The analysis of variance indicated highly significant differences among the environments and interaction of genotype and environment, except for fruit length to width ratio. Additive gene effects were significant for the inheritance of these traits and expression of these additive genes were greatly affected by environments. The general combining ability (GCA) was greater than their respective specific combining ability (SCA) for all traits except for fruit yield per plant. High values of GCA and SCA effects for characters of interest were dispersed among different genotypes. From this study it was observed that the best parental line was BT15 based on days to first flowering, total number of fruits per plant, total soluble solids and total phenol content. Besides, the parent BM5 showed good general combining ability effects for fruit yield per plant, fruit length and fruit length to width ratio and the parent BB1 performed good general combining ability for fruit diameter, fruit girth and fruit weight. Besides, other parents showed the best performance for only one trait. On the other hand, the hybrid BT6 × BT15 was reported bearing early flowering with high total phenol content and the hybrid BM9 × BB26 has high fruit yield with high soluble solids. Besides, the hybrid BM9 × BB1 has a high fruit diameter and fruit weight. All other hybrids except for these three (BT6 × BT15, BM9 × BB26 and BM9 × BB1) were shown the best performance for only one trait. Hence, based on the desired trait, the hybrid can be selected for future use after large scale evaluation

    Synthesis of poly (hydroxamic acid) ligand from polymer grafted khaya cellulose for transition metals extraction

    Get PDF
    A cellulose-graft-poly(methyl acrylate) was synthesized by free radical initiating process and the ester functional groups were converted into the hydroxamic acid ligand. The intermediate and final products are characterized by FT-IR, FE-SEM, HR-TEM and XPS technique. The pH of the solution acts as a key factor in achieving optical color signals of metal complexation. The reflectance spectra of the [Cu-ligand]n+ complex was found to be a highest absorbance at 99.8 % at pH 6 and it was increased upon increasing of Cu2+ ion concentrations and a broad peak at 700 nm was observed which indicated the charge transfer (π-π transition) metals-Cu complex. The adsorption capacity of copper was found to be superior (336 mg g−1) rather than other transition metals such as Fe3+, Co3+, Cr3+, Ni2+, Mn2+ and Zn2+ were 310, 295, 288, 250, 248 and 225 mg g-1, respectively at pH 6. The experimental data of all metal ions fitted significantly with the pseudo-second-order rate equation. The transition metal ions sorption onto ligand were well fitted with the Langmuir isotherm model (R2>0.99), which suggested that the cellulose-based adsorbent known as poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability of the poly(hydroxamic acid) ligand was checked by the sorption/desorption process up to ten cycles without any significant loss in its original sensing and removal performances
    corecore